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Correct Tracking in FFAGs
J. Scott Berg

Brookhaven National Laboratory; Building 901A; P. O. Box 5000, Upton, NY 11973-5000

Abstract. Fixed field alternating gradient accelerators have many features wighre careful modeling in simulation.
They accept beams over an extremely large momentum range, feaeteast a factor of 2. They often use magnets whose
lengths are comparable to their apertures. The beam often makes tayigs avith respect to the magnet axis and pole
face normal. In some applications (muons in particular), the beam mscapsubstantial fraction of the magnet aperture.
The longitudinal dynamics in these machines often differ significantly fndmat one finds in more conventional machines
such as synchrotrons. These characteristics require that simulaties be careful to avoid inappropriate approximations
in describing particle motion in FFAGs. One must properly treat the coatelisystem geometry independently from the
magnetic fields. One cannot blindly assume that phase space varigbksaall. One must take magnet end fields properly
into account. Finally, one must carefully consider what it means to hdweiched” distribution that is injected into these
machines.

Keywords: Fixed Field Alternating Gradient Accelerator; Simulatidinacking
PACS: 29.27.Bd

INTRODUCTION

Accelerator tracking codes do not generally lay out magriigtids in a global coordinate system and integrate pasticle
exactly in that coordinate system. They generally workllg@bout a reference curve, and assume that deviations from
that reference curve will be relatively small. This helpsmthe layout of beamlines more straightforward, improves
efficiency, and in some cases improves accuracy. Many ofghignaptions that allow one to do this with a high degree
of accuracy for more conventional machines are slightlyigmi§cantly less accurate for FFAGs.

This paper outlines some features that should be treatg@pyan tracking codes that will be used for FFAGs. The
features that are emphasized are those which are oftencaiotiéd in conventional tracking codes. The purpose of
discussing them here is to aid an FFAG designer in evaluatiigging tracking codes for their application, and to point
out features that they should consider including in tragkind analysis codes that they write. There are few, if any,
new results here: this paper should be seen as a review tihepisiowledge, some of which may not be generally
well known.

TRUNCATED POWER SERIES

A truncated power series (TPS) of ordeis a function of thed-dimensional vectoz of the form
Y azid. 1)

=0

Jat-t]gsn
Much analysis in accelerator physics is done using TPSsinstaince, a set of first order TPS is used to represent
a linear map, which then gives the Courant-Snyder functittresdispersion, and the momentum compaction. Chro-
maticities, tune shifts with amplitude, and resonanceiigiterms are calculated from higher-order TPSs.

The TPSs used in accelerator physics are generally a funatideviations of phase space variables from reference
values. Rapid convergence of a TPS as its order increades m#l these deviations being small relative to some
characteristic values. If one ignores coupling, these adteristic values are the magnet aperture (for transverse
dimensions), the RF frequency (for time), and a “referemasefmentum (for transverse momentum and energy divided
by the speed of light). The “reference” momentum for these purposes is some mimewithin the designed
operating range of the machine. In most synchrotrons, fampte, it is an excellent approximation to assume that the
deviations are small: typically the largest variablestredato their characteristic values are the transversetipasi
generally being a couple percent of the pipe aperture.
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FIGURE 1. Trace of the horizontal transfer matrix for 10 cells as a function ofgnfar a non-scaling FFAG, computed using
COSY INFINITY for several different map orders.

FFAGs clearly do not have small phase space variables in arteyar area: energy deviation. Since FFAGs
generally accelerate by a factor of 2 or more in momentum getiergy deviation relative to the central energy is
usually at least 33%, if not more. Thus, one needs to be vegfudaabout using a TPS with energy deviation as one
of the variables. Furthermore, smaller FFAG rings can haxgel angles relative to magnet axes, both because of the
small number of cells and the fact that FFAG cells generadlycoboth forward and backward over some part of their
energy range. Also, since the closed orbit deviation in afG-generally moves over a relatively large range in the
magnet, often the fraction of the magnet aperture (at lea&tdntally) occupied by the beam can be very large.

There are some codes, such as COSY INFINITY [1, 2, 3] and MAREY]4], which perform their analysis by
constructing a single power series to represent the pantidtion through a section of beam line. If used blindly,
these types of codes will probably have difficulties repnésg the behavior in FFAGs, especially because of the large
energy range. For example, Fig. 1 shows that even compuimdgunes over the entire working range of an FFAG
can be problematic for some lattices: even a 10th order ctatipn fails to converge over the operating range of the
FFAG. However, if the computation is done for a single ceditéad of 10 cells, the computation converges to the
correct answer. One can construct examples that fail toargevover the working range even for a single lattice cell.
Off-energy tracking tends to be especially problematicnwepresenting the transfer map using a single power series.
Figure 2 shows strongly non-symplectic behavior in thekirag (note the particles converging toward the origin).
Even if the tracking were “symplectified,” the results wostdl be highly inaccurate.

Truncated power series should not be abandoned entiredy. ttould instead be used carefully and appropriately.
On can, for instance, find a closed orbit at a given energyowitlusing TPS methods (symplectic integration, for
example), and then compute a linear map about that closet ©His will give one energy-dependent tunes and
Courant-Snyder functions which will not suffer from erroetated to the nonzero energy deviation.
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FIGURE 2. Tracking using COSY INFINITY for a single FFAG lattice cell at the minimurarking energy for the lattice.

Magnetic fields are often well represented by TPSs. Theliattihe magnetic fields can be well represented by TPSs
while the resulting map cannot comes from the truncationigtiér order terms in map composition: the composition
of two nth order TPSs results inrfth order TPS, and the truncation mth order results in significant information
loss. This is also why a single cell will be more well reprdsdrthan a group of cells or an entire ring: the single cell
map has had less truncation occur on it than the group of €&fis could thus imagine several levels of TPS use

1. Doing direct integration where magnetic fields are regmeesd using TPSs.
2. Constructing TPS maps for individual elements.
3. Constructing TPS maps for sections of beamline (celtsgample).

| have demonstrated that at least in some cases, the thirdagbpis problematic for FFAGs (Fig. 2). The first method
is almost certainly workable, and the second method may $awve utility (it is used in some cases in MAD [5, 6].

GEOMETRY

Most standard accelerator analysis and tracking codesedtfair coordinate system by the fields in the magnets.
Thus, the curvaturé of the coordinate system is related to the midplane vertieajnetic fieldBy by h = qBy/po,
whereq is the “reference particle” charge apgdis a “reference momentum.”

For FFAGs, however, it is important to separate the cootdisgstem from the magnetic field. The geometry
should be that dictated by the geometry of the magnet [7,.8D8ing this is one of the express goals of the PTC
routines [10]. For example, consider a scaling FFAG, whieedield in the midplane is of the fong,(e)rk. Figure 3
shows the closed orbits, which are clearly not at a constatitis from the center of the machine. Using a coordinate
system about one of these closed orbits would add unnegessaaplexity to computing the magnetic fields. The



FIGURE 3. Closed orbits at different energies in a scaling FFAG, drawn over tiymets, with a dot-dash line showing a circular
arc with a constant distance to the machine center.

FIGURE 4. Orbit offset in a gradient rectangular bend.

closed orbits don’t even make arcs of circles, making a dasmn of the coordinate system difficult. Instead, using a
cylindrical coordinate system is obviously straightfordiand the optimal approach.

Another example is the gradient rectangular bend, a gradiegnet where the lines of constant field are straight
lines. These are commonly used in non-scaling FFAGs. MAB]%and other codes often represent these as a “sector
bend,” a magnet where the lines of constant field are arcadesi with the end pole faces rotated to be parallel to
each other. Due to the short length and large aperture of #umets, one would generally not use a true sector bend
in a non-scaling FFAG; a rectangular bend is more appraprigte sector bend with rotated pole faces allows one
the convenience of defining a coordinate system within thgnabased on the arc of a circle. However, in the true
rectangular bend, there is no orbit which is the arc of a €irtb approximate the relationship between bend field,
bend angle, and length that one finds in most tracking cocdescan set up the magnet so that if the orbit did bend in
an arc of a circle with a radius of curvature defined by the Hsid, then the integral of the gradient part of the field



would be zero. The offsétx (see Fig. 4) to accomplish this is

6 6 1 6
L (8 csé 5= 4cot2) , 2)

wherelL is the length of the magnet along the axis ahds the total bend angle of the drdNotice that this is
independent of the gradient in the magnet, and allows oneristauct an approximate relationship between the bend
angle, the magnet length, and the dipole field in a gradietangular bend.

Implicit in the above is that there is no orbit whose transegrhase space coordinates are zero everywhere. Even
if one had only rectangular gradient bends with the offsgtt{izre would still in general be no energy with a closed
orbit whose coordinates, even in drifts, were zero (althoiigvould be close if one used (2)). This is a necessary
consequence of separating the geometry from the magnétic fie

When one goes from a model with no end fields to one with true efdkfithe coordinate system and layout of the
magnets should not be changing by that modification alomeil&ly, displacing or mispowering magnets for the study
of errors should not change the underlying coordinate sys¥et if one does not maintain an independence between
the coordinate system and the fields in the magnets, thesendiup being tied together, and this will complicate the
analysis of the effects in question.

Itis important to separate time of flight from geometry aslvia FFAGs. Often codes will define all times relative
to the aforementioned reference particle, and RF cavitit#®¥evsynchronized to that reference particle. In the desig
of an FFAG for muon machines, one may design a machine bastwdoehavior of a particle at the central energy,
but may want the RF cavities to be synchronized to the closgitiaf a particle with a different energy [11, 12]. One
may in fact want to vary the energy at which the particle iscéyanized to without changing the lattice design (this
would involve slight changes in the RF frequency). The mastightforward way to handle this is to use the total
time rather than the time relative to a reference particl@@BI [13, 14] and ICOOL [15] do this). If one chooses
to use time relative to some fixed-velocity particle attattrethe coordinate system (not necessarily an actual feartic
trajectory), one must either be able to set the velocity af ffarticle independently of a “reference momentum” that
may have been used to define a coordinate system and/or fi@lds$q set that velocity greater than the speed of light
if needed), or to specify a phase that advances by a fixed armaweach turn.

MAGNET END FIELDS

In accelerator analysis, we often imagine magnets as havifigld that doesn’t change longitudinally within the
magnet, and abruptly goes to zero outside the magnet. Il enegmet, the field changes gradually from its intended
value within the magnet to zero outside the magnet. Maxsvetfuations will cause higher-order fields to appear as a
result of this field variation. The combination of the nonsare field profile and the “Maxwellian” fields it generates
are known as “end fields” or “edge fields.”

Since FFAGs tend to have magnets whose lengths are shortacedi their aperture, the relative importance of
these end fields tends to be larger in FFAGs than in convaitiaecelerators. Thus, tracking codes which model
FFAGs must have some method for handling the end fields. Tdrerthree possible ways of doing this:

1. Field maps
2. Generating fields using an end profile and Maxwell's equati
3. Hard-edge approximations
Field maps are the best way to get a realistic field from a knm&gnet. However, they suffer from some practical
difficulties:
- Obtaining a field map requires having a magnet design, whetiunlikely to have at the machine design stage.
- A field map may require keeping a large amount of data

« The interpolation method may introduce noise, particylot linear interpolation, which is the most straightfor-
ward way of handling field map data.

- The interpolation method may not satisfy Maxwell's equasio

1 This is probably the only new result in this paper, and is abiytrivial.



- To integrate symplecticity, one needs vector potentialereas most field maps will instead contain field data.
« One cannot easily manipulate the field data to do a paransttrity of the magnet parameters.

One may instead specify the longitudinal profile of the dmbkicomponent of the field (e.g., the dipole and
guadrupole) and use Maxwell's equations to compute theenighder components (this is done in COSY INFIN-
ITY [1, 2, 3], ZGOUBI [13, 14], and ICOOL [15]). This gives a siothness related to the smoothness of the repre-
sentation of the longitudinal profile of the desired field gament, which in principle can avoid the noise introduced
in linear interpolation of field maps. One can straightfamia vary the end field profile and see its effects. The vector
potentials can be used directly to get symplectic track®gmputing the higher order components is an order-by-
order iterative process, however, so the computation maustdpped at some order, which will lead to fields that don’t
satisfy Maxwell's equations perfectly. Furthermore, fkésative computation can be slow.

Computing the fields from Maxwell’'s equations also requoee to specify a magnet symmetry; this is equivalent
to choosing constants of integration in solving Maxweltgiations. Take a quadrupole as an example. One could say
thatBy(x, 0, z) = B»(2)x in the midplane for 8,(2) that one specifies. Or instead, one could specify that todboreler
in x andy, By(x,y,z) = B2(2)x, Bx(X,Y,2) = B2(2)y, andA; has only terms with cos2symmetry. These two are not
equivalent; which one is correct depends on the design aftgnet. For example, to maintain the scaling condition
in a scaling FFAG, one will try to design the magnets to maimtaerX field profile in the midplane; thus, choosing
the constants of integration to specify the field in the nadgl is probably the correct representation. Many methods
of designing superconducting magnets, on the other hanth treate fields with given multipole components, and
thus one should probably specify those rather than the amdpflield profile for such magnets.

At the earliest design stages, one does not even necedgaoily what the magnet apertures will be, making the
choice of an end field profile difficult. Thus, in cases where dpnes not know much about the magnet design, or
where one wants to do rapid computations that take into axtdbe magnet end fields, one can use so called hard-
edge approximations [16, 17]. In these approximations,ategrates in the body of the magnet as if the field did not
vary longitudinally, and applies a single transformatiahthe entrance and exit of the magnet. These transfornsation
can be made correct to first order in the body field in the limitle length of the varying magnet end field goes to
zero [17]. One has to apply the same considerations of symirttethese hard-edge end fields as for the end fields
arising from a specified longitudinal field profile.

Most accelerator physicists are familiar with one kind ofdaadge approximation: the linear transformation
associated with dipole pole faces that are not perpenditauthe reference orbit. Some codes treat this as the faligwi
transformation:

Apy = FgBoytang, )

whereBy is the dipole fieldq is the particle charge, anglis the angle that the perpendicular to the pole face makes
with respect to the reference orbit. If one assumes that ttiplame field profile in the body of the magnetBg(X)

and it remains proportional to that as the field goes to zate,finds that the transformation at the edge (to lowest
order) arises from the Lie generator [17, 18]

2
wwyo(x)’ (4)
2\/PP—pz— P

where the coordinateis with respect to the magnet edge, not the reference orbitoNy does this generator induce
the transformation (3), but it also induces a (nonlineam$formation in all the phase space variables except energy
Furthermore, for the transformation g, it modifies the sense of (3): one should &get the point where the particle

exits the magnet, and one should use the angle that the aeidile (not the reference particle) makes with respect
to the magnet pole face.

DISTRIBUTION MATCHING

When one is simulating a machine, one should in general sttrtandistribution that is matched (or nearly matched)
to the Courant-Snyder functions of the lattice at the inggcipoint, since that is what should occur in the real
machine. Similarly, one should match the dispersion at teciion point as well, since FFAG lattices generally
don't have dispersion-free sections. None of this is verpigsing. However, in some FFAGs, one must also be aware
of longitudinal matching. This may be straightforward ia lfrequency FFAG where the frequency is matched to the



revolution frequency of the beam’s current energy. Howeeerigh-frequency systems, such as some muon FFAGs,
one must be aware of two aspects of longitudinal matching.

First of all, since there is dispersion in most of the machiihere will be a corresponding transformation in the time
of flight: if the horizontal position and momentufr, p) are related to coordinates about the closed ¢rbjp) by

X = X+Xo(E) p=p+ po(E) )]

then the time of flight is related to an uncoupled time of fligluty
r:r+d—xf—p. (6)

If one has a large transverse emittance and high frequencygRéring this correlation could lead to undesirable
emittance growth due to mismatch.

Secondly, in fixed, high-frequency machines, finding theénoait longitudinal ellipse shape is actually a nonlinear
problem [11, 12]. One should take this into account when shgpthe distribution to track through the machine.
One must of course also consider how one would create thibdison in the real machine. Ignoring the optimal
distribution, or making an educated “guess” at the distidmny can give performance much worse than the capability
of the machine.

CONCLUSION

This paper has reviewed some features that should be coedidénen writing or reviewing tracking and analysis
codes for FFAGs. It has described why those features arepdriience for correct tracking and analysis in FFAGs.
These features should at least be given consideration whénghor evaluating code for use in FFAGs.
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